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ANNALS OF MATHEMATICS 

Vol. 40, No. 4, October, 1939 

ON A STATIONARY SYSTEM WITH SPHERICAL SYMMETRY 
CONSISTING OF MANY GRAVITATING MASSES 

BY ALBERT EINSTEIN 

(Received May 10, 1939) 

If one considers Schwarzschild's solution of the static gravitational field of 
spherical symmetry 

2 

(1) ~ 2X X dX)+ 2r d2 ds2 =(1 + )(d + dx2 3d ) dt 

it is noted that 

g44=(~ 

vanishes for r = A42. This means that a clock kept at this place would go at 
the rate zero. Further it is easy to show that both light rays and material 
particles take an infinitely long time (measured in "coordinate time") in order 
to reach the point r = 4/2 when originating from a point r > A42. In this 
sense the sphere r = 4/2 constitutes a place where the field is singular. (4 repre- 
sents the gravitating mass.) 

There arises the question whether it is possible to build up a field containing 
such singularities with the help of actual gravitating masses, or whether such 
regions with vanishing 944 do not exist in cases which have physical reality. 
Schwarzschild himself investigated the gravitational field which is produced by 
an incompressible liquid. He found that in this case, too, there appears a 
region with vanishing g44 if only, with given density of the liquid, the radius of 
the field-producing sphere is chosen large enough. 

This argument, however, is not convincing; the concept of an incompressible 
liquid is not compatible with relativity theory as elastic waves would have to 
travel with infinite velocity. It would be necessary, therefore, to introduce a 
compressible liquid whose equation of state excludes the possibility of sound 
signals with a speed in excess of the velocity of light. But the treatment of any 
such problem would be quite involved; besides, the choice of such an equation 
of state would be arbitrary within wide limits, and one could not be sure that 
thereby no assumptions have been made which contain physical impossibilities. 

One is thus led to ask whether matter cannot be introduced in such a way 
that questionable assumptions are excluded from the very beginning. In fact 
this can be done by choosing, as the field-producing mass, a great number of 

922 
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small gravitating particles which move freely under the influence of the field 
produced by all of them together. This is a system resembling a spherical star 
cluster. Hereby we may proceed as if the field, in which the particles are 
moving, were produced by a continuous mass distribution of spherical sym- 
metry, corresponding to the whole of the particles. 

We can further simplify our considerations by the special assumption that 
all particles move along circular paths around the center of symmetry of the 
cluster. Even in this case it is still possible to choose arbitrarily the radial 
distribution of mass density. The result of the following consideration will be 
that it is impossible to make g44 zero anywhere, and that the total gravitating 
mass which may be produced by distributing particles within a given radius, 
always remains below a certain bound. 

1. On the paths of the particles and their spacial distribution 

By a suitable choice of the radial coordinate, it is possible to obtain the 
gravitational field of the cluster of spherical symmetry in the form 

(2) ds2 = -a(dx + dX + dx3) + b dt2, 

whereby a and b are functions of r = (X2 + x2 + x2). First we shall investigate 
the circular motion of one particle around the center of symmetry. Suppose, 
for instance, this motion takes place within the plane x3 = 0. Through the 
introduction of polar coordinates 

X3 = r cos 6, 

xi = r sin t cos sp, 

x2 = r sin t sin jo, 
(2) assumes the form 

(2a) ds2 = -a[dr2 + r2(d62 + sin2 a d'p2)] + b dt2. 
The field is characterized by 

gil = -a, = -ar2 sin 2 t 

922= -ar, 944= b, 
where all the rest of the g, vanish. The particle under consideration satisfies 
the equation 

(3) d2x, + r dx- dxa _ ? 
+ Pa ds ds-0 

In addition its motion is determined by the conditions 

dx, dr 0 d2x3 d2 o _ 

ds ds ds2 ds2 - 

X= = dd2X4 d2t 
X2 = =2 =s ds= 0. 
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It turns out that (3) is satisfied when 

1 X3 d33 + 
I dx4 dX4 = O. 

dS ds dsds 
or when 

(4) -(ar') dtp + b =0. 

Because of (2a), we have 

(5) (ds) = -ar2/d + b. 
Thus, d<o/dt and ds/dt are determined when the field is given. 

Because ds2 has to be positive for the world line of a particle in motion we have 

(ds'2 b r2dP2=b-a 2 b___ 0 
-dt) (dt - (ar2) 

or 
b' 

(6) 1-b > 0. 
(ar2)' 
ar2 

By applying this condition to Schwarzschild's field (1) we obtain 

(6a) r > 2(2 + V/3). 2 

It follows that in the case of a Schwarzschild field a particle is bound to follow 
a path with a radius greater than (2 + \/3) times the radius of the Schwarzschild 
singularity. This fact has the greatest significance for the following investiga- 
tion: In the outermost layer of our particle cluster (and beyond it) the gravita- 
tional field is given by (1). It follows that the total gravitating mass of the 
cluster determines a lower limit for the radius of the cluster; this radius is (in 
coordinate measure) more than (2 + \/3) times greater than the radius of the 
Schwarzschild singularity as defined by the field in the empty space outside 
the cluster. 

The normal to the plane in which the particle considered moves has the 
direction of X3. If it is assumed that the normals to an infinite number of such 
planes are distributed at random and also that the phase angles of the paths are 
subject to a random distribution, then we obtain a cluster of particles of spherical 
symmetry whose paths have the radius r. The most general cluster to be 
considered by us consists of an infinite number of clusters of this special type 
which belong to all values of r. (More accurately speaking, the whole cluster 
consists, of course, of a finite number of particles so that a field is created which 
only approximates spherical symmetry.) 
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In order to formulate the conditions of dynamical equilibrium of the cluster 
under the influence of its own gravitational field, we first have to compute the 
energy tensor belonging to such a cluster. For this purpose we assume, for the 
sake of simplicity that all particles have the same mass m. 

2. The Matter-Energy Tensor of the Cluster 

We consider the motion of particles within a volume element on the x3-axis. 
The velocity vectors all have the same amount, they are perpendicular on the 
x3-direction, and they are evenly distributed with respect to the directions 
within the xI, x2 - plane. We know further that the matter-energy tensor 
depends also on the particle density and on the gravitational potentials, but 
not on the derivatives of the latter. It is, therefore, possible to determine this 
tensor by a straightforward calculation. 

First we consider particles, with the mass m and the particle density no per 
unit volume, at rest with respect to a coordinate system of the theory of re- 
stricted relativity. In such a case of the energy tensor only the (44)-com- 
ponent exists, 

T 44 = mn dx4_4 
ds ds 

With respect to coordinate systems in relative motion in the xi-direction we 
have the components 

Tl = mno dxi dxi T44= dx4 dx4 
ds ds = nn0 T8 -ds 

T 14 = mnOdx, dx4 
d= ds 

The particle density n with respect to such a system is determined by the 
equations: 

noVo=nV, Vo ds = V dt, 

where Vo and V denote the rest volume and the coordinate volume respectively. 
Therefore we have 

ds 
no= n- 

dX4' 

We now consider the case when the velocity vector of the particle makes an angle 
a with respect to the xi-axis, and is perpendicular to the x3-axis. By using the 
relations derived above and by introducing d12 = dX2 + dx2 , we obtain 

ds (dl\2 C.82 T'12m ds (diV 

T" = mnsna T = mn d- Oa! 

a, cos asinao, 
dx4 ds dx4 ds 

24 ds ldl"2 .2 14 ds dl dx4 i-I sin a, T'= mn-d-cosa 
dx4\d 

2 dx4 dl ds 
T nds (dX4, 24\2n x = mn = mn ds~~~4j dldx sin a, 

-, ~d dxI d8 ds 
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all the other components of the energy tensor being zero. In the case that the 
velocity vectors are evenly distributed over all values of a the result is 

2 dx4 \dsl / 
2 

22 

T7" = mn d= T44 . ds 

We now proceed to the case that the components of the metric tensor are gii = 
922 = 933 = -a and 944 = b. The components of the energy tensor are obtained 
by applying the transformation law for tensors and by transforming the co- 
ordinates according to 

dx. = adt. 

dx4 = b'dX. 

We obtain 

Til = () Tl = aTn1, 

T44= (d-4)2 T44 = bT44. 

dl and dx4, contained in Tl and T44, are to be replaced dl by a'dl and dx4 by bld-t. 
Further we have to introduce the particle density with respect to the new co- 
ordinates, fl, according to 

ndxldx2dx3 = ndx1dx2dd3 

or 

n = ia1. 

After having made all these transformations and substitutions, and omitting 
the bars denoting the new coordinate system, we obtain 

IT11 = T22 = imna b_ ds (dil2 
(7) 

T44= m - b dX4 
ds 

In these equations ds/dx4 and duds have to be replaced by the expressions given 
by (4) and (5) which were derived from the equations of the geodesic lines. 
Further we write dt instead of dx4 and rdep instead of dl. The final result is 

FT7a = T22 = mna ' ( -a'a f 
(7a) t~ T T = __. . 
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where a and # denote the expressions 

a = In (r2a), 
(7b) 

B= In b. 

3. The Differential Equations of the Gravitational Field 

The differential equation of a gravitational field which is due to a matter- 
energy tensor are 

(8) Go, = Rpv. - 4gtR + KIT#, = 0. 

These equations have to be specialized for a static field of the type (2). By a 
straight forward calculation the following equations are obtained for a point on 
the xraxis: 

(9) - = a -+ + - = 0, ra 'b rb4a, 2ab 

(10) Gil !!O) #la' lb' 1(b'\ 
2 a 2 b 2 ra 2 rb 4kb) +b 77l=0? 

a /at\I a' i1a"1 2 a 
(11) G/44=(-) + 2 -+4( +gT44=0. (11) ~ ~b a/ ra 4\a/ 

For Ti, and T44 we have to substitute the expressions given by (7a), (7b). As m 
is to be considered a given constant, the only functions of the coordinates in 
these equations are n, a, and b. It is to be expected in the first place that n, 
i.e. radial distribution of matter, remains undetermined by the equations. 
This makes necessary the existence of an identity between the equations (9), 
(10), (11). In fact such an identity exists. Its form is 

(12) 0 ? G3 + (r+ G)33( +-) Gl + G44. 

It may be obtained in the following way: We have constructed T, by consider- 
ing particles which satisfy the equations of motion in the field. Therefore the 
covariant divergence of this tensor is bound to vanish identically. On the other 
hand, the divergence of R,, - lg,,R vanishes identically on account of the 
Bianchi identities. Of these four equations having the form of divergences only 
the one with the index 3 yields anything which does not already vanish identi- 
cally with respect to the G, , and that is (12). From the form of (12) it follows 
that (10) is the consequence of (9) and (11). The problem is therefore reduced 
to (9) and (11), and the particle density remains undetermined, as was to be 
expected. 

This result makes possible a further simplification of the problem. If, in (9), 
the quantities a = ln (r2a) and $ = ln b are introduced, we obtain the equation 

(13) 2 + 1a'2 + a'3' = O. r 2 2 
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By taking into account (13) and (7a), we obtain from (11) 

(14) a" + t+ -a + Kmnfa ( ) O. 

r2 

This is a differential equation for a alone. When a is already known b is obtained 
by a simple integration from 

(13a) a' r2 2 

4. Localization of the Particles within a Thin Spherical Shell 

Outside the cluster, the gravitational field is represented by Schwarzschild's 
solution which, with our choice of the coordinate system, is given by (1). Inside 
the cluster, the field is determined by (14). Thereby, the function n is to be 
considered as given. However, n is not completely arbitrary, as the total radius 
of the cluster is restricted by the lower limit given by (6a). 

Equation (14) represents a complicated relation between the particle density 
n and the function a representing the gravitational field. The limiting case, 
however, in which the gravitating particles are concentrated within an infinitely 
thin spherical shell, between r = ro- A and r = ro, is comparatively simple. 
Of course, this case could only be realized if the individual particles had the 
rest-volume zero, which cannot be the case. This idealization, however, still is 
of interest as a limiting case for the radial distribution of the particles. 

We divide the whole space into three zones for separate consideration, part 0 
to be the part outside the shell, r _ ro, part I to be the part inside the shell, 
r _ ro -A, and part S to be the part of the shell ro - A < r _ ro . In 0, the 
gravitational field is represented by (1), in I, it is represented by (2) with 
constant values of a and b. It follows that a' (and a') have to change within S 
the faster the smaller A is chosen. However, as a' remains finite in S, a itself 
changes only infinitely little in S. It is, therefore, permissible in S to neglect a' 
compared with a". We therefore replace (14) within S by 

(14a) ai" + Kmna ( 2\ = ?' 

where a and r are to be treated as constants for integration purposes. We 
introduce the variable 

2 3 2,t2 
z =1ra - 

and the "constant" 

C =Kna* r 
V2 
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and obtain the equation 

(14b) (1 1 4 2)dz = Cndr. 

z is hereby determined as a function of r within S if n is given as a function of r. 
When the integration is carried out between ro - A and ro we obtain 

(15) z Z-arctgz - = N = K V2 a-hmN 4irro 8r ro 

where N designates the number of particles in S. It follows from (1) that for 
r = ro 

(15a) zr0 = -\V2 (1 - 4cr + o2)* a = __ 

and from (2) that, because of a and b being constant in I, in I 

(15b) Zr = \/2. 

It follows from (6a) that 

1 
0< =2-\/3. 2 + x\/3 

It turns out that this is just the condition for the numerator of the expression 
for zro to be real. (15), for each possible ro, gives the relationship between the 
sum of the masses of the particles, mN, and the total gravitating mass g of the 
cluster. For large values of ro , with a fixed value of g, one obtains in the limit 

K 
(16) 8K mN. 

The factor K/8r is due to the fact that m is measured in grams, 4, however, in 
gravitational units. (16) therefore simply states that in this limiting case the 
gravitating mass of the cluster is equal to the sum of the particle masses. 

The most illuminating way to express this result is the following: 
Outside the shell (r > ro), the gravitational field is given by 

1+- 2r 

Inside the shell it is given by the same expression, with the difference, however, 
that r is to be replaced by the constant ro , whereby the inequality 

ro > 2 (2 + v/3) 
2 
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must be satisfied. The number N of particles of the mass m which together form 
the shell is given by the following consideration: As an abbreviation we introduce 

K mN_ M - 

82ro -- 2ro a2ro 
Then we have 

2 = [(V/2 - arctg V/2) - (zrO -arctg zro)](1 + a)2 

V\8 
where 

Zro=-\/2 (1 -4a + a2). 

a can assume values between 0 and 2 - V-/3(-*27). The quantity 

0* 

is only very little different from zero in this whole region. A few typical values 
are given in the following table: 

.05 .042 

.14 .06 

.2 .055 

.23 .013 

.27 -0.022 

This leads to a very interesting consequence: First it is clear that (2 - cr)/cr 

may be replaced by (2 - c)/2 with good approximation and this by (M -,u)M. 
This latter quantity is the relative decrease of energy of the cluster when it 
contracts from an infinite radius to the radius ro. The table shows that this 
contraction energy has a maximum near a- = 0.15, and for greater values of oa 
i.e. smaller values of ro, it decreases again. The physical cause of this effect is 
that, with decreasing ro, the potential energy of the cluster decreases, but the 
kinetic energy increases. For sufficiently small values of ro the latter effect 
surpasses the former. 

It is therefore clear that the decrease of the radius with decreasing energy 
would come to an end for a value of about a = 0.15, i.e. a radius of about 
6.7(,u/2ro), while the lower limit of the radius as given by the velocity of light is 
(2 + V/3) (ji/2ro). The value of r corresponding to the minimum energy means 
an upper limit for the particle velocity in the direction of the tangent of about 
0.65 times the light velocity. 

5. Qualitative Discussion of the Case of Arbitrary Radial Mass Distribution 

We consider the case of a given mass 1A and a shell radius ro satisfying the 
inequality (6a). When a number N of particles is brought into this shell zone, 
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as determined by (15), then the exterior gravitational field is just completely 
screened off from the interior I so that there the field will be Euclidean. This 
means that the line element in I is characterized by constant values of a and b, 
where b cannot reach its lower limit 1/A/3. 

If, however, the number of particles in S is chosen smaller than according to 
(15) then the field will not be screened off entirely (,u is hereby regarded as being 
kept fixed). We can then satisfy the theory formally by replacing the Euclidean 
line element in I by a Schwarzschild line element of the form 

A(1 + r) ' b B( 2r) 

where A, B, and jil are constants. iii will be smaller than ji which characterizes 
the field outside the shell. This interior field has a singularity of the Schwarz- 
schild type (b = 0) at r = jil/2. 

This singularity, however, can be removed by introducing a second shell Si 
inside S, which has to be constructed so that the gravitational field in its interior 
will be Euclidean. The whole cluster will then consist of two shells S and Si 
and will have no Schwarzschild singularity. 

Again this system can be modified by reducing the number of particles in Si 
so that it will not screen off its exterior field (between S and SI) entirely; then a 
third shell S2, of still smaller radius, may be constructed so that its exterior field 
is just screened off entirely from its interior. 

This method can be reiterated up to the center of the cluster. Thus one 
obtains clusters with the most varied radial mass distributions. There will be 
also various steady distributions. It is impossible, however, that b should 
vanish anywhere. The radius of the cluster will always be greater than the 
limiting radius '.s(2 + \/3), and it will not be possible to concentrate the matter 
of the cluster arbitrarily densely near the center of the cluster. 

6. The Case of Continuous Particle Density 
The consideration given in part 5. leads toward the solution for continuous 

distributions of the particle density. We divide the interval 0 < r < ro into an 
infinite number of equal parts dr. We imagine that there is constructed in the 
center of each partition dr a shell of a two dimensional character of the type 
discussed in part 4. The shells may be chosen so that they are equivalent to a 
continuous distribution of mass. Between any two subsequent shells we shall 
have a gravitational field of the Schwarzschild type 

(17) ds2 = -A(1 + (d + dx + dx) + B( dt22 

where A, B, and r are constants which differ only infinitesimally for two neigh- 
boring regions. Then the sum total of all these partial solutions constitutes the 
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gravitational field inside the cluster. Our task is to determine A, B, and r as 
functions of r. 

We consider two neighboring Schwarzschild solutions which belong to the 
radius intervals r - 2 dr to r + 2 dr and r + 2 dr to r + 3dr. In the first region 
the values of A, B, and r belong to the value r of the radius, in the second to the 
value r + dr. If we use the quantities introduced by (2) then the two local 
solutions are given by 

a(r; A, r), a(r; A + dA, r + dr), 

and 

b(r; B, r), b(r; B + dB, r + dr), 

where a, b are functions of r in accordance with (17). These two solutions are to 
assume the same values for a and b in the point r + 2 dr because these quantities 
must not change when we pass through a shell occupied by particles. It follows, 
up to quantities of the first order 

El dA + aadr = 0, 
aA - 

ab 
dB+abdr 0 

EldB 
+ -r 0 

or, in accordance with (17) 

0 A +r 1+ ad 
(18) 

A 

( dB 4 rda + adr =0 
B r ( + a)(1 -a) 

where a is written for r/2r. 
These equations determine A, B as functions of r when r or a is given as func- 

tion of r. It turns out that a, i3, computed from the solutions A, B of (18), are 
the solutions of (13), represented with the help of the "parameter" function a. 
r is arbitrary within certain limits because it is closely connected with the mass 
distribution. On the other hand, A, B, and r have to satisfy the condition that 
(17) makes possible circular particle paths for all values of r, i.e. a and b have to 
satisfy the inequality (6). In connection with (17) we obtain the inequality 

B' -_ 4 a' 

(19) 1- '1 > 2 _ 

- + - + 41+a 

(18) and (19) together completely determine the problem within the cluster; 
a is arbitrary save for the only restriction that, together with the values of A and 
B, calculated from (18), it has to satisfy (19). 
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For r ? ro we have, of course, A = B = 1, with r = const. = . 
By using (18) we may write (19) thus: 

4 a 
1_(1 + a) ( - a) > 0 1- l+ )(l)> 

2-4+O 1+a 

or, with some transformations: 

(19a) -2 + /3)( -2- V/3) > 0. 
(1 - 

This inequality has to hold within as well as outside the cluster. For infinite 
values of r, a vanishes. Further a has to be positive, as negative masses are 
excluded. Because of the denominator, uf can nowhere be greater than 1. 
Therefore the numerator of the left hand side has to be positive. As the second 
factor of the numerator is always negative the first factor has to be negative, too. 
We therefore obtain 
(19b) o- < 2-\/3. 

This is a generalization of (6a) as (6a) was only proven to hold for the outside 
boundary of the cluster. 

r represents the mass enclosed by the spherical surface of the radius r. In 
order that negative masses should be ruled out it is necessary that everywhere 

(20) dr > 0. 
dr= 

It is further necessary that r vanishes for r = 0. Save for this condition r 
may be chosen arbitrarily if only u- satisfies (19b). When r and therefore u- is 
given then the problem of determining the gravitational field of the form (17) 
is reduced to the carrying out of two integrations, according to (18). 

The equations (18) give us the integration of (13) with arbitrary mass density 
distribution, where the latter is expressed by r or u. (14) gives the correspond- 
ign particle density n. We shall express n in terms of u. We have 

(21) 0 Qr 1 + a) r2 (1 + 0)2 a+ KmnaV , 0-2 

together with the relations 

(22) a = A(t + a)4 A' 44ru' +o 

Therefore, when u- is given as a function of r we obtain n by carrying out one 
integration only. 

a is positive and stays below the limit 2 - \/3. The square root of the 
denominator of the third term in (21) therefore is always positive. We further 
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have r/2r where r is the gravitating mass contained in a sphere of the radius r. 
r therefore increases monotonically with increasing r. If the mass density is 
to be finite in the region around r = 0 then r has to decrease in that region at 
least as fast as r3 and a at least as fast as r2. Under these conditions the two 
first terms in (21) will be finite everywhere, and also A'IA, A, and a. (21) 
therefore gives us a finite value for n. It is further possible to prove from the 
properties of r that the sum of the two first terms in (21) is negative everywhere. 

From all these considerations it can be followed that a and b are finite and not 
zero in the whole space. 

By combining (2), (4), (17), and (18) one can show that the ratio V between 
the particle velocity and between the light velocity pointing into the same 
direction, is given by 

(23) V2 = :3 - 2= ) a' (1 _ o-)2 

When u stays below a given limit V will stay below a certain limit, too. 

7. A Special Case of Continuous Mass Distribution 
It is of some interest to investigate the case where u inside the cluster is a 

constant 00. Strictly speaking this case falls outside of our conditions as a 
ought to decrease toward the point r = 0 at least as fast as r2 in order that the 
density in the neighborhood of the center should stay finite. We can satisfy 
this condition by choosing u for instance 

(24) 0_ = _o(1 - ecT2) 

where c is to be an arbitrary constant. We then consider from the start the 
limiting case of c = oc. This special case is discussed here in order to supple- 
ment the discussions of part 4. There the whole mass was distributed as far 
outside (within the total radius ro) as possible, while here we have a strong con- 
centration of mass toward the center of the cluster. 

As r is the gravitating mass enclosed by a spherical surface of the radius r, 
dr/(47rr2dr) is the mean density of the gravitating mass in the point r. As 

2. r = 2uo-r we obtain for this mean density mo/27rr , i.e. a radial decrease of the den- 
sity like 1/r2 up to the cluster boundary r = ro . 

From (18), in accordance with (24) (in the limiting case of vanishing expo 
nential term), we obtain 

t dA 4ao dr 
|A 1 + ao r' 

(18a) 
dB_ 4o-o dr 
B 1 -_ r 
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and since for r = ro, A and B have to assume the value 1 

A 

(=\-4Il+) 

(18b) B 0 

For r = 0 we obtain a = oo and b = 0. This type of singularity, however, is 
not to be taken seriously because it would be avoided if we had taken into con- 
sideration the exponential term in (24). It is to be noted that through a suitable 
choice of the mass distribution this singularity can be approximated, but not 
reached. 

We make use of (21) in order to determine the relation existing between the 
sum of the rest masses of the particles M 

M= Kml nm47rfr2dr, 

and the total gravitating mass of the cluster 4u. It can be shown that the first 
term of (21) gives only a vanishing contribution for infinitely great values of c. 

This follows from the fact that 1+ ) vanishes everywhere where the influence 

of the exponential term of (24) has become unnoticeable. We compute the 
contribution of the second term in (21) by omitting the exponential term from 
the start and obtain, after a short calculation, as the final result, with y = 2rooo 

(25) M = ,A(1-4co- + 1+U 
( l O 2. 

This equation when compared with the relation 

(26) j = 2ioro 

allows an easy discussion of the essential properties of clusters of this type. 
First it is easy to see that we have extremely simple relations when we change 

M but keep fixed uo (O < uo < 2 - \/3) and thereby the tangential velocity of 
the particles as measured in light velocity units. When M is multiplied by z 
the gravitating mass will be zu and the diameter of the cluster will be z* 2r. 
The mean density will be multiplied by 1/z2. 

In order to obtain a survey of all possibilities it is therefore sufficient to keep 
fixed the number of constituting particles and thereby M and to vary so together 
with the diameter 2ro and the gravitating mass A. We obtain for M = 1 

(1 - o) 
2 + ao 

1 + aO 
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The following table gives , and 2ro for M = 1 as functions of 0o (approximately): 

0o' 2ro 

0. 1. 00 
.05 .988 19.76 
.1 .948 9.48 
.15 .97 6.56 
.2 1.13 5.65 
.23 1.32 5.63 
.25 1.82 7.40 
.26 2.63 10.1 
.268 00 0c 

When the cluster is contracted from an infinite diameter its mass decreases at 
the most about 5%. This minimal mass will be reached when the diameter 2ro 
is about 9. The diameter can be further reduced down to about 5.6, but only by 
adding enormous amounts of energy. It is not possible to compress the cluster 
any more while preserving the chosen mass distribution. A further addition 
of energy enlarges the diameter again. In this way the energy content, i.e. the 
gravitating mass of the cluster, can be increased arbitrarily without destroying 
the cluster. To each possible diameter there belong two clusters (when the 
number of particles is given) which differ with respect to the particle velocity. 

Of course, these paradoxical results are not represented by anything in physi- 
cal nature. Only that branch belonging to smaller co values contains the cases 
bearing some resemblance to real stars, and this branch only for diameter values 
between cc and 9M. 

The case of the cluster of the shell type, discussed earlier in this paper, behaves 
quite similarly to this one, despite the different mass distribution. The shell 
type cluster, however, does not contain a case with infinite 1,u given a finite M. 

The essential result of this investigation is a clear understanding as to why the 
"Schwarzschild singularities" do not exist in physical reality. Although the 
theory given here treats only clusters whose particles move along circular paths 
it does not seem to be subject to reasonable doubt that mote general cases will 
have analogous results. The "Schwarzschild singularity" does not appear for 
the reason that matter cannot be concentrated arbitrarily. And this is due to 
the fact that otherwise the constituting particles would reach the velocity of 
light. 

This investigation arose out of discussions the author conducted with Professor 
H. P. Robertson and with Drs. V. Bargmann and P. Bergmann on the mathe- 
matical and physical significance of the Schwarzschild singularity. The problem 
quite naturally leads to the question, answered by this paper in the negative, 
as to whether physical models are capable of exhibiting such a singularity. 

THE INSTITUTE FOR ADVANCED STUDY 
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